Fundamental Structure

- Basic notations:

Sectors denoted by j
Households denoted by h
Factors denoted by L and K and are owned by households
Q_{j} is the production of goods by the $f^{\text {th }}$ sector
P_{j} is the price of goods produced by the $j^{\text {th }}$ sector
$a_{j 1, j}$ is the amount of goods used from sector $j 1$ when producing one unit of goods in the $f^{\text {th }}$ sector
L_{j} is the usage of labor by the $f^{\text {th }}$ sector
W_{L} is the price of labor (the wage rate)
K_{j} is the usage of capital in the $j^{\text {th }}$ sector
W_{K} is the price of capital

Including Demand for Products and Factors

- Factor demand derived from CES function
: Production function

$$
Q_{j}=\phi_{j}\left(\delta_{j} L_{j}^{\left(\sigma_{j}-1\right) / \sigma_{j}}+\left(1-\delta_{j}\right) K_{j}^{\left(\sigma_{j}-1\right) / \sigma_{j}}\right)^{\sigma_{j} /\left(\sigma_{j}-1\right)}
$$

: Factor demand

$$
\begin{aligned}
& L_{j}=\frac{1}{\phi_{j}} Q_{j}\left[\delta_{j}+\left(1-\delta_{j}\right)\left(\frac{\delta_{j} W_{K}}{\left(1-\delta_{j}\right) W_{L}}\right)^{\left(1-\sigma_{j}\right)}\right]^{\sigma_{j} /\left(1-\sigma_{j}\right)} \\
& K_{j}=\frac{1}{\phi_{j}} Q_{j}\left[\delta_{j}\left(\frac{\left(1-\delta_{j}\right) W_{L}}{\delta_{j} W_{K}}\right)^{\left(1-\sigma_{j}\right)}+\left(1-\delta_{j}\right)\right]^{\sigma_{j} /\left(1-\sigma_{j}\right)}
\end{aligned}
$$

Note that: $\sigma \rightarrow 0$ then CES tends to Leontief $\sigma \rightarrow 1$ then CES tends to Cobb-Douglas

Including Demand for Products and factors

- Household product demand from CES Utility function

Maximize Utility

$$
U=\left[\sum_{j}(\alpha)^{1 / \sigma}\left(X_{j}\right)^{(\sigma-1) / \sigma}\right]^{\sigma /(\sigma-1)}
$$

s.t

$$
\sum_{j} P_{j} X_{j} \leq W_{L} \bar{L}+W_{K} \bar{K} \equiv \text { Income }
$$

Yields Demand Curve

$$
X_{j}=\frac{\alpha_{j}(\text { Income })}{P_{j}{ }^{\sigma} \sum_{j}\left(\alpha_{j}\left(P_{j}\right)^{1-\sigma}\right)}
$$

Fundamental Structure

1. Supply-Demand identities for factors \& products
a. Factor market:

Total demand is less than or equal to total supply in every factor market or the excess demand in the factor market is less than or equal to zero.

$$
\begin{aligned}
& \sum_{j} L_{j}-\sum_{h} \bar{L}_{h} \leq 0 \\
& \sum_{j} K_{j}-\sum_{h} \bar{K}_{h} \leq 0
\end{aligned}
$$

Total supply is the sum across the household endowments

Fundamental Structure

1. Supply-Demand identities (con't)
b. Product or output market:

Total demand in every output market including consumer and intermediate production usage is less than or equal to total supply in that market or the excess demand in each output market is less than or equal to zero.

Consumer consumption (ff)

Intermediate usage
$-Q_{j} \leq 0$
Total production (ff)

Fundamental Structure

2. Zero profits in each sector

Note that: CRS + Perfect Competition
Unit price $=$ unit cost

Fundamental Structure

3. Household income identity

This relationship implies that household exhausts its income.

$$
\text { Income }_{h} \geq W_{L} \bar{L}_{h}+W_{K} \bar{K}_{h}
$$

Note that:

Household consumptions $\left(X_{j}\right)$ are a function of price and income.

Maximize $\mathrm{U}\left(\mathrm{X}_{\mathrm{j}}\right)$
s.t. $\quad \sum_{j} P_{j} X_{j} \leq W_{L} \bar{L}+W_{K} \bar{K}=$ Income

Complementarity

Recall:

Walras' Law: For any price vector $\mathbf{P}, \mathbf{P Z}(P)=0$; i.e., the value of the excess demand, is identically zero, (Varian, page 317)

Namely, if total demand is less than total supply for the factor/commodity markets then the price in that market must be zero; otherwise, prices will be nonzero only if supply equals demand

This implies PRICE OR EXCESS DEMAND $=0$.

This leads to the following complementary relationships.

Complementarity (con't)

In a CGE model, a set of prices P and quantities Q are defined as variables such that $D=S$ (Walras' Law)

$$
\begin{aligned}
& (Q s-Q d) P=0 \\
& (P d-P) Q d=0 \\
& (P s-P) Q s=0
\end{aligned}
$$

Implications:

Each equation must be binding or an associated complementary variable must be zero.

$$
\begin{aligned}
& \text { IF } P>0 \text { then } Q s=Q d \\
& I F Q d>0 \text { then } P d=P, \\
& I F Q s>0 \text { then } P s=P, \text { and }
\end{aligned}
$$

This is similar to KT conditions of the following optimization model.

Complementarity (con't)

1. $\begin{array}{ll}0 & \leq W_{L} \\ & 0 \leq W_{K} \perp \perp \sum_{j} L_{j}-\sum_{h} \bar{L}_{h} \leq 0 \\ \sum_{j} K_{j}-\sum_{h} \bar{K}_{h} \leq 0 & \begin{array}{l}\text { representing } \\ \text { complementary } \\ \text { relationship }\end{array} \\ \end{array}$

Factor prices must be zero if factors are not all used up.
Non zero prices exist if factors all are consumed.
2. $0 \leq P_{j} \perp \sum_{h} X_{j h}+\sum_{j 1} a_{j, j 1} Q_{j 1}-Q_{j} \leq 0 \quad \forall j$

Product prices must be zero if products are not all consumed. Non zero prices exist if products all are consumed.

Complementarity (con’t)

3. $0 \leq Q_{j} \perp P_{j} Q_{j} \leq \sum_{j 1} P_{j 1} \mathbf{a}_{\mathbf{j} 1, \mathrm{j}} Q_{j}+W_{L} L_{j}+W_{K} K_{j}$

Firm profits must equal zero and a non-zero production level is achieved.

Firm profits can be less than costs without the firm producing.
4. $0 \leq$ Income $_{h} \perp$ Income $_{h} \geq W_{L} \bar{L}_{h}+W_{K} \bar{K}_{h}$

Household incomes must be non-zero if expenditures exhaust incomes.

Numerical Example

Symbol	Brief Description
σ_{h}	Elasticity of substitution in household CES
$\alpha_{j h}$	Consumption share in household CES
$\bar{L}_{\boldsymbol{h}} \bar{K}_{\boldsymbol{K}}$	Household endowments of factors
$\mathbf{a}_{\mathbf{j}, \mathrm{j}}$	Use of goods in sector1 when producing in sector \mathbf{j}
$\phi{ }_{\boldsymbol{j}}$	Scale parameter in CES production function
$\delta{ }_{\boldsymbol{j}}$	Distribution parameter in CES production
σ_{j}	Elasticity of production factor substitution
Sh	Household share of tax disbursements
s_{j}	Government goods purchase dependence on revenues
${ }^{t} h$	Household tax level
${ }^{\mathbf{t}} \mathbf{f j}$	Tax on factor \boldsymbol{f} in sector \boldsymbol{j}
F_{h}	Household tax exemptions

Parameter Specification

- Example of simple $2 \times 2 \times 2$ CGE (Shoven and Whalley 1984)

Production Parameters					
Sector (j)		δ_{j}	σ_{j}		Labor
Food	1.5	0.6	2.0		0.0
Non-Food	2.0	0.7	0.5		0.0
Consumer Parameters					
Household (h)	σ_{h}	S_{h}	${ }^{t}$ h	F_{h}	
Farmer	0.75	0.6	0.00	0.0	
Non-Farmer	1.5	0.4	0.00	0.0	
	$\alpha_{h j}$			Endowments	
	Food	Non	-Food	Labor	Capital
Farmer	0.3	0		60	0
Non-Farmer	0.5	0		0	25
Government					
Food	0.0				
Non-Food	0.0				

Equilibrium Results

1. Total demand for each output exactly matches the amount produced

Equilibrium Results (con't)

2. Producer revenues equal consumer expenditures

	Food	NonFood		
NonFarmer	$\mathrm{r} \quad 16.110$	18.227		
Earmer	18.787	41.213		$\sum P_{j} X_{j h}$
Total	34.897	59.439		
3	323 PARAMETER ProdRev Producer revenues			
Food 3	34.897, NonEood 59.439,		Total	94.337

Equilibrium Results (con't)

3. Labor and capital are exhausted

$$
\begin{aligned}
& 323 \text { PARAMETER ResrcQuan Factor endowment levels } \\
& L_{j}=\frac{1}{\phi_{j}} Q_{j}\left[\delta_{j}+\left(1-\delta_{j}\right)\left(\frac{\delta_{j} W_{K}}{\left(1-\delta_{j}\right) W_{L}}\right)^{\left(1-\sigma_{j}\right)}\right]^{\sigma_{j} /\left(1-\sigma_{j}\right)} \\
& K_{j}=\frac{1}{\phi_{j}} Q_{j}\left[\delta_{j}\left(\frac{\left(1-\delta_{j}\right) W_{L}}{\delta_{j} W_{K}}\right)^{\left(1-\sigma_{j}\right)}+\left(1-\delta_{j}\right)\right]^{\sigma_{j} /\left(1-\sigma_{j}\right)}
\end{aligned}
$$

Equilibrium Results (con't)

4. Unit cost = selling price => zero profits

Equilibrium Results (con't)

5. Consumer factor incomes equal producer factor costs

Labor Capital

NonFarmer
Farmer
Total

323 PARAMETER ResrcCost Producer factor costs

> Food NonFood Total

Labor
Capital

$$
\begin{array}{r}
26.366 \\
8.532
\end{array}
$$

> 33.634
> 25.805

Equilibrium Results (con't)

6. Household expenditures exhaust their incomes

Inconsistent Data

Because calibration relies on the benchmark data, what to do if
: Data/Accounting inconsistency
=> demand \neq supply
=> expenditures exceed incomes
=> consumer expenditure classification does not match production classification
=> lack of data
DATA PROCESSING \& ADJUSTMENT! => No uniform adjustment
=> adjustment varies from case to case
=> interpolation and use of other economic data
=> use previous year data with some adjustment
=> RAS (row-and-column-sum) procedure
=> modeler's judgment
Suggested Reading: St-Hilaire, F., and J. Whalley. "A microconsistent equilibrium data

Building the Basic Data - things to do

Things to be considered when building the basic data

1. Check the classifications among data sets
e.g. HH expenditures categories vs. industry product categories
2. Decide on units for goods and factors so that prices and quantities are separately obtained
e.g. choose units for goods and factors so that they have a price of unity in the benchmark equilibrium

Note: in the CGE model only the relative price is the focus and the absolute price is not important.

Building the Basic Data - things to do

3. Check if the data is consistent with the equilibrium conditions e.g.
a. Demands $=$ Supplies (consumption = production)
b. Zero profits (revenues = costs)
c. All agents (i.e. HH, Government, ROW) exhaust their budgets
d. Resources are used up.

Suggested Reading:
St-Hilaire, F., and J. Whalley. "A microconsistent equilibrium data set for Canada for use in tax policy analysis." Review of Income and Wealth 29, 175-204.

